Calculus Functions

This section contains general purpose calculus functions.

Area

Perform cumulative area-under-the-curve computation with two columns of data of equal length. The result will be returned in a column of the same length as the input columns.

Parameter Set

Parameters Description
Column X X column for the area operation. Column numbers begin with zero
Column Y Y column for the area operation. Column numbers begin with zero
Result Column X Name Name of result column X
Result Column Y Name Name of result column Y
Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Area Under The Curve (AUC) calculations are used widely in the financial, medical, and engineering sciences. Some specific examples are measuring bloodstream absorption of drugs, strength of materials like steel, plastic, the total force of wind on a particular building shape, etc.

Data Sample

Input Parameter Result

12620

Stress

Strain

1100

0.0010

1950

0.0020

2570

0.0030

3230

0.0040

3800

0.0050

4600

0.0060

5300

0.0070

6160

0.0080

6600

0.0090

7300

0.010

7600

0.0110

7500

0.0120

7450

0.0135

7560

0.0140

7600

0.0150

7780

0.0160

7700

0.0505

8100

0.1000

8000

0.1500

8700

0.2000

9300

0.2500

9860

0.3000

10330

0.3600

10980

0.4600

11850

0.6000

12340

0.8600

12450

1.0600

1.2600

12760

1.4600

Column X = 1
Column Y = 0
Area Option = AGGRAGATE
Result Column X Name =
Result Column Y Name =
Include Original Data = Yes

13890.725000000002

Stress

Strain

Cal X

Cal Y

1100

0.0010

0.0010

0.0

1950

0.0020

0.0020

1.5250000000000001

2570

0.0030

0.0030

3.785

3230

0.0040

0.0040

6.6850000000000005

3800

0.0050

0.0050

10.200000000000001

4600

0.0060

0.0060

14.400000000000002

5300

0.0070

0.0070

19.35

6160

0.0080

0.0080

25.080000000000002

6600

0.0090

0.0090

31.459999999999997

7300

0.010

0.01

38.410000000000004

7600

0.0110

0.011

45.86

7500

0.0120

0.012

53.410000000000004

7450

0.0135

0.0135

64.6225

7560

0.0140

0.014

68.375

7600

0.0150

0.015

75.955

7780

0.0160

0.016

83.64500000000001

7700

0.0505

0.0505

350.67500000000007

8100

0.1000

0.1

741.7250000000001

8000

0.1500

0.15

1144.225

8700

0.2000

0.2

1561.725

9300

0.2500

0.25

2011.725

9860

0.3000

0.3

2490.725

10330

0.3600

0.36

3096.4249999999997

10980

0.4600

0.46

4161.925

11850

0.6000

0.6

5760.025

12340

0.8600

0.86

8904.725

12450

1.0600

1.06

11383.725000000002

12620

1.2600

1.26

12760

1.4600

1.46

16428.725000000002

 
Chart Sample
This chart shows a strength of an alloy. The bottom plot area shows the effect of stress. The top plot area is an “area under the curve” calculation of the line in the bottom plot. It shows the strength of the alloy although it is less pliable.
 
chart
 

Differentiation

Rate of change calculation. Perform cumulative differentiation computation with two columns of data of equal length. The result will be returned in a column of the same length as the input columns.

Parameter Set

Parameters Description
Column X X column for the differentiation operation. Column numbers begin with zero
Column Y Y column for the differentiation operation. Column numbers begin with zero
Result Column X Name Name of result column X
Result Column Y Name Name of result column Y
Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Used to determine the rate of change – velocity, marginal cost, marginal revenue, etc, for a given process at a given point.

Data Sample

Input Parameter Result

Tons

Cost to
Produce ($1K)

0

1

1

8

1.5

10.75

2

13

2.5

14.75

3

16

Column X = 0
Column Y = 1
Result Column X Name = Tons
Result Column Y Name = Marginal Cost
Include Original Data = Yes

Tons

Cost to
Produce ($1K)

Tons

Marginal Cost

0

1

0.0

7.0

1

8

1.0

6.0

1.5

10.75

1.5

5.0

2

13

2.0

4.0

2.5

14.75

2.5

3.0

3

16

3.0

2.0

 
Chart Sample
This chart shows the differentiation function (marginal cost) over the cost to produce a ton of cement. As the volume of cement production increases, the cost per ton goes down.
 
chart
 

Curve Length

Perform cumulative computation of the length of a 2 dimensional curve assuming that the x and y points respectively are provided in two columns of equal length. The result will be returned in a column of the same length as the input columns.

Parameter Set

Parameters Description
Column X X column for the curve length operation. Column numbers begin with zero
Column Y Y column for the curve length operation. Column numbers begin with zero
Result Column X Name Name of result column X
Result Column Y Name Name of result column Y
Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Measuring geographic borders, civil engineering, computer-aided-design, volatility.

Data Sample

Input Parameter

x

y

x2

y2

-1

-0.333333

-1

-0.333333

-.75

-0.140625

-.79

-0.140625

-0.5

-0.041666666

-0.68

-0.041666666

-0.25

-0.005208333

-0.25

0.05

0

0

0

0.15

0.25

0.005208333

0.25

0.185208333

0.5

0.041666666

0.5

0.241666666

.75

0.140625

.75

0.280625

1

0.333333

1

0.333333

Column X = 0
Column Y = 1
Result Column X Name = P1X
Result Column Y Name = P1Y
Include Original Data = Yes
Result

x

y

x2

y2

P1X

P1Y

-1

-0.333333

-1

-0.333333

-1.0

0.0

-.75

-0.140625

-.79

-0.140625

-0.75

0.31565229804961026

-0.5

-0.041666666

-0.68

-0.041666666

-0.5

0.5845254128603989

-0.25

-0.005208333

-0.25

0.05

-0.25

0.8371698468880238

0

0

0

0.15

0.0

1.0872240944677016

0.25

0.005208333

0.25

0.185208333

0.25

1.3372783420473797

0.5

0.041666666

0.5

0.241666666

0.5

1.5899227760750045

.75

0.140625

.75

0.280625

0.75

1.8587958908857933

1

0.333333

1

0.333333

1.0

2.1744481889354037

 
Chart Sample
The chart below shows a comparison of two routes. The distance is cumulatively calculated, showing that “Proposed Route 1” is the shortest route (but not by much).
 
chart
 

Surface Metrics

Compute data point count, curve length and surface area of a 2 dimensional curve assuming that the x and y points respectively are provided in two columns of equal length.

Parameter Set

Parameters Description
Column for X X column for the surface metrics operation. Column numbers begin with zero
Column for Y Y column for the surface metrics operation. Column numbers begin with zero
Include Original Data If “Yes” include the original dataset in the result table

 
Applications

This is a summary function that provides curve length, point count, and surface area.

Data Sample

Input Parameter Result

X

Y

-0.5

0.5

0.5

0.5

0.5

-0.5

-0.5

-0.5

-0.5

0.5

Column for X = 0
Column for Y = 1
Include Original Data = Yes 

X

Y

Metric

Value

-0.5

0.5

Count

5

0.5

0.5

Curve Length

4.0

0.5

-0.5

Surface Area

1.0

-0.5

-0.5

null

null

-0.5

0.5

null

null

 

Regression

Regression is performed in order to find a mathematical equation that closely represents a set of paired (x,y) data. This allows one to estimate y values for x points other than the ones present in the original data set. This module fits two columns of related data (x,y pairs) to an equation of the form y = f(x), where the function f(x) is determined by the type and order of regression selected. The result x column returns a new set of x values (the original set or a smoothened one). The result y column returns the function f(x) evaluated at the new x points. The new (x,y) pairs need not include the original ones.

Parameter Set

Parameters Description
Column X X column for the regression operation. Column numbers begin with zero
Column Y Y column for the regression operation. Column numbers begin with zero
Operation Type of regression equation to which the data will be fit. POLYNOMIAL ,
EXPONENTIAL , HYPERBOLA , LOGARITHMIC, INVERSE, INVERSE_POWER, POLYEXP, POWER (Refer to Appendix for regression equation)
Degree Polynomial degree applicable only to those regression equations that are expressed as a polynomial series (POLYNOMIAL, INVERSE, LOGARITHMIC, POLYEXP)
Smoothen Total number of (x,y) pairs to be returned in the result columns. This number should be larger than the original data set.
Result Column X Name Name of result column X
Result Column Y Name Name of result column Y
Include Original Data If “Yes” include the original dataset in the result table

 

Applications

Useful in statistical surveys, polling, or other situations where a finite set of samples is used to determine the characteristics of the overall data set.

Data Sample

Input Parameter Result

X

Y

Z

0

0

1

1

1

0

2

2

1

3

3

0

4

4

1

5

5

0

Column X = 0
Column Y = 2
Operation = POLYNOMIAL
Degree = 1, 3 or 5
Smoothen = 20
Result Column X Name = X1D1, X1D3, or X1D5
Result Column Y Name = Y1D1, Y1D3, or Y1D5
Include Original Data = Yes
See Plot displayed below. This uses 3 Regressions on the data for 1,3 and 5 degrees

 

Chart Sample
 
chart
 

Fourier

Fourier regression is performed in order to find a mathematical equation that closely represents a set of paired (x,y) data that is periodic and can be well represented by a Fourier series. This allows one to estimate y values for x points other than the ones present in the original data set. This module fits two columns of related data (x,y pairs) to an equation of the form ( f(x) = b0 + b1cos(x) + b2sin(x) + b3cos(2*x) + b4sin(2*x) + …). The result x column returns a new set of x values (the original set or a smoothened one). The result y column returns the function f(x) evaluated at the new x points. The new (x,y) pairs need not include the original ones.

Parameter Set

Parameters Description
Column X X column for the Fourier regression operation. Column numbers begin with zero
Column Y Y column for the Fourier regression operation. Column numbers begin with zero
Order For a selected order of n, the Fourier equation fit to the data will extend up to the terms including cos(nx) and sin(nx)
Smoothen Total number of (x,y) pairs to be returned in the result columns. This number should be larger than the original data set.
Result Column X Name Name of result column X
Result Column Y Name Name of result column Y
Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Useful in statistical surveys, polling, or other situations where a finite set of samples is used to determine the characteristics of the overall data set.

Data Sample

Input Parameter Result

angle

values

0

0

0.392699

0.707107

0.785398

1.707107

1.178097

0.707107

1.570796

1

1.963495

-0.70711

2.316594

-0.29289

2.709293

-0.70711

3.141593

0

3.433292

0.707107

3.926991

0.29289

4.31969

0.707107

4.712389

-1

5.105088

-0.70711

5.497787

-1.70711

5.890486

-0.70711

6.283185

0

Column X = 0
Column Y = 1
Order = 5
Smoothen = 30
Result Column X Name = For X
Result Column Y Name = For Y
Include Original Data = Yes
See Plot displayed below

 
Chart Sample
In the plot shown below, the original data is displayed along with the results of Fourier regression.
 
chart
 

Filter

The filter module fits a set of periodic data to a Fourier series of selected order and filters out unwanted orders (e.g. remove noise from a signal). Two columns of related data (x,y pairs) are fit to an equation of the form ( f(x) = b0 + b1cos(x) + b2sin(x) + b3cos(2*x) + b4sin(2*x) + …). The result x column returns a new set of x values (the original set or a smoothened one). The result y column returns the function f(x) evaluated at the new x points with only terms of the desired orders included.

Parameter Set

Parameters Description
Column X X column for the filter operation. Column numbers begin with zero
Column Y Y column for the filter operation. Column numbers begin with zero
Filter Filter type options include Low Pass (remove orders above second cut-off order),
High Pass (remove orders below first cut-off order),
Band Pass (only keep orders between first cut-off order and second cut-off order),
Band Stop (remove orders between first cut-off order and second cut-off order),
Dominant (keep number of dominant orders specified and remove the rest)
First Cut-off Order Cut-off applicable to High Pass, Band Pass and Band Stop Filter options
Second Cut-off Order Cut-off applicable to Low Pass , Band Pass and Band Stop Filter options
Dominant Orders Number of dominant orders to be retained beginning from the most dominant to the least. The dominant orders are the ones for which the Fourier coefficients have the greatest magnitude
Order For a selected order of n, the Fourier equation fit to the data will extend up to the terms including cos(nx) and sin(nx)
Smoothen Total number of (x,y) pairs to be returned in the result columns. This number should be larger than the original data set.
Result Column X Name Name of result column X
Result Column Y Name Name of result column Y
Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Digital signal processing, other fields where refinement of the data input is required.

Data Sample

Input Parameter Result

angle

values

0

0

0.392699

0.707107

0.785398

1.707107

1.178097

0.707107

1.570796

1

1.963495

-0.70711

2.316594

-0.29289

2.709293

-0.70711

3.141593

0

3.433292

0.707107

3.926991

0.29289

4.31969

0.707107

4.712389

-1

5.105088

-0.70711

5.497787

-1.70711

5.890486

-0.70711

6.283185

0

Column X = 0
Column Y = 1
Filter = Low Pass
First Cut-off Order = 1
Second Cut-off Order = 1
Dominant Orders=
Order = 5
Smoothen = 50
Result Column X Name = LPX
Result Column Y Name = LPY
See Plot displayed below

 
Chart Sample
In the plot shown below, the original data is displayed along with the results of low-pass (order 1) and high pass (order 2) filtering.
 
chart
 

Track Order

The Track Order module fits a set of periodic data to a Fourier series of selected order and calculates the magnitude of each order. Two columns of related data (x,y pairs) are fit to an equation of the form ( f(x) = b0 + b1cos(x) + b2sin(x) + b3cos(2*x) + b4sin(2*x) + …). The coefficients of the fit are used to calculate the magnitude of each order.

Parameter Set

Parameters Description
Column X X column for the Track Order operation. Column numbers begin with zero
Column Y Y column for the Track Order operation. Column numbers begin with zero
Order For a selected order of n, the Fourier equation fit to the data will extend up to the terms including cos(nx) and sin(nx)
Result Column X Name Name of result column X
Result Column Y Name Name of result column Y
Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Helps determine the order that is the best fit for the input data. Useful in selecting the precise filter to be applied.

Data Sample

Input Parameter Result

angle

values

0

0

0.392699

0.707107

0.785398

1.707107

1.178097

0.707107

1.570796

1

1.963495

-0.70711

2.316594

-0.29289

2.709293

-0.70711

3.141593

0

3.433292

0.707107

3.926991

0.29289

4.31969

0.707107

4.712389

-1

5.105088

-0.70711

5.497787

-1.70711

5.890486

-0.70711

6.283185

0

Column X = 0
Column Y = 1
Order = 5
Result Column X Name = TOX
Result Column Y Name = TOY
Include Original Data = Yes 

 

See Plot displayed below

 
Chart Sample
The following plot shows Track Order analysis performed on the above input data. The dominant orders in this case are 2 and 1.
 
chart
 

Interpolation

Interpolation on a set of scattered (x,y) data is performed in order to estimate y values at intermediate x points. A piecewise fit on subsets of data points is performed with a spline or piecewise polynomial of selected degree. The result (x,y) pairs include the original data plus (x,y) pairs evaluated at the number of intermediate points specified by the smoothen parameter.

Parameter Set

Parameters Description
Column X X column for the interpolation operation. Column numbers begin with zero
Column Y Y column for the interpolation operation. Column numbers begin with zero
Operation Spline type LINEAR, QUADRATIC or CUBIC indicating spline of degree 1, 2 or 3 respectively
Segment Number of points per segment including both end points. Each consecutive pair of (x,y) points in the input data is treated as a segment.
Result Column X Name Name of result column X
Result Column Y Name Name of result column Y
Include Original Data If “Yes” include the original dataset in the result table

 
Applications

General line smoothing to show trends or a smooth distribution.

Data Sample

Input Parameter Result

x

y

0

0

1

1

2

0

3

1

4

0

Column X = 0
Column Y = 1
Operation = CUBIC
Segment = 10
Result Column X Name = CX
Result Column Y Name = CY
Include Original Data = Yes
See Plot displayed below

 
Chart Sample
 
chart