Statistical Process Control (SPC) Analytics

In business, there is a natural variation in nearly every business-related activity or process. For example, in manufacturing, the number of substandard or defective items per million produced will likely vary with each production run. In customer service, the number of complaints may be higher one month than they were the month before. A school district may discover that SAT scores in one high school are higher than another.

The challenge with business variation is that it is not always clear, for a given data set or time period, if the reported results are significant enough to warrant management’s attention.

SPC, or Statistical Process Control, is a method for determining when the variation in a given business process has exceeded “normal” behavior and is considered “out of control”. SPC calculations are applied to raw data, and the results are then graphed for easy viewing. Once identified, out of control processes can command the appropriate level of management’s time and attention, and strategies can be devised to address them.

In NetCharts Analytics, the functions described in the following section perform the necessary SPC calculations and generate data for easy graphing.

There are two main types of SPC charts. Control charts for variables, and control charts for attributes.

Control charts for variables are based on a periodic sampling of real data values (weight, cost, height, location, etc) in order to determine the behavior of the process. They are considered to be preventative; identifying problems before they occur. The SPC control charts for variables are:

  • Run Chart
  • XBar – R Control Charts
  • XBar – s Control Charts
  • Median – R Control Charts
  • Median – s Control Charts
  • Individuals Chart or Moving Range (MR) Chart
  • Exponentially Weighted Moving Average (EWMA) Charts
  • Histogram
  • Probability Chart

Control charts for attributes are used to identify samples in a given set of data that conform to a defined standard versus those that do not. The SPC control charts for attributes are:

  • p Charts
  • np Charts
  • c Charts
  • u Charts

Following are general guidelines for Control Chart selection:

  1. If the data is of type measurable then use Control charts for variablesTo view raw data and make general observations use Run Chart.

    To derive statistical analysis:
    If the sample size is 1 then use MR Chart
    If the sample size is greater than 1 and number of samples is less than 10 then use Range Charts – Xbar R or Median R.
    If the sample size is greater than 1 and number of samples is greater than 10 then use s (Standard Deviation) Charts – XBar s or Median s.
    EWMA chart is an alternative to XBar charts when sample size is greater than 1. EWMA chart is an alternative to MR charts when sample size is equal to 1. This chart has a build in mechanism for incorporating information from all previous samples, weighting the information from the closest sample with a higher weight.
    Histogram can be used to check if a process is normally distributed and centered.
    Probability chart is used to determine the normality of a distribution.

  2. If the data is of type countable then use Control charts for AttributesIf the number of nonconformities is less than the items checked use p Chart, when the sample sizes are not the same, or np Chart, when the sample sizes are the same for each sample.

    If the number of nonconformities is greater than the items checked use u Chart when the sample sizes are not the same, or c Chart, when the sample sizes are the same for each sample.

SPC Run Rules

In most of the Variables SPC charts, a set of run rules will be applied to the data with the results posted in the last column of output data. These rules may be used in concert with NetCharts Designer’s Conditional Colors process module in order to highlight one or more out-of-control conditions.

Consider the results below of an XBAR-s function (NOTE: All XDBBar columns have been removed from the table below because of space):

n XBAR XBAR-UCL XBAR_LCL SD SD-UCL SD-LCL Rules Check
1 2.0 2.0003745907734896 1.9995528602069026 1.6329931618552722E-4 5.398926232648148E-4 0.0 0
2 2.0000999999999998 2.0003745907734896 1.9995528602069026 2.160246899469734E-4 5.398926232648148E-4 0.0 0
3 2.0001333333333338 2.0003745907734896 1.9995528602069026 2.86744175568142E-4 5.398926232648148E-4 0.0 0
4 2.000033333333333 2.0003745907734896 1.9995528602069026 2.86744175568056E-4 5.398926232648148E-4 0.0 0
5 2.0002666666666666 2.0003745907734896 1.9995528602069026 4.714045207920265E-5 5.398926232648148E-4 0.0 0
6 2.0002333333333335 2.0003745907734896 1.9995528602069026

1.699673171197698E-4

5.398926232648148E-4

0.0

0

7

1.9997999999999998

2.0003745907734896

1.9995528602069026

2.220446049250313E-16

5.398926232648148E-4

0.0

0

8

2.0000666666666667

2.0003745907734896

1.9995528602069026

4.714045207920265E-5

5.398926232648148E-4

0.0

0

9

2.0001333333333338

2.0003745907734896

1.9995528602069026

2.624669291338015E-4

5.398926232648148E-4

0.0

0

10

1.9997999999999998

2.0003745907734896

1.9995528602069026

2.449489742783815E-4

5.398926232648148E-4

0.0

0

11

2.000033333333333

2.0003745907734896

1.9995528602069026

1.699673171197698E-4

5.398926232648148E-4

0.0

0

12

2.000166666666667

2.0003745907734896

1.9995528602069026

2.86744175568142E-4

5.398926232648148E-4

0.0

0

13

1.9999666666666667

2.0003745907734896

1.9995528602069026

1.247219128925301E-4

5.398926232648148E-4

0.0

0

14

2.0002

2.0003745907734896

1.9995528602069026

1.6329931618552722E-4

5.398926232648148E-4

0.0

0

15

1.9985666666666668

2.0003745907734896

1.9995528602069026

5.436502143433355E-4

5.398926232648148E-4

0.0

1

16

1.9998333333333334

2.0003745907734896

1.9995528602069026

4.109609335313039E-4

5.398926232648148E-4

0.0

0

17

2.00005

2.0003745907734896

1.9995528602069026

1.4999999999998348E-4

5.398926232648148E-4

0.0

0

 
Note that in row 15 and 19, the Rules Check column (at the end) identifies a rule as having been met. The value of the Rules Check result distinguishes between which rule(s) were met. In the following manner:

Value Meaning
0 No Rule Met
1 Point exceeded 3-sigma UCL/LCL
10 Eight successive points on the same side of the centerline
100 Six successive points that increase or decrease
1000 Two out of three points that are on the same side of the centerline, both at a distance exceeding 2 sigma from the centerline.
10000 Four out of five points that are on the same side of the centerline with four at a distance exceeding 1 sigma from the centerline.

 
Note that if a point meets more than one rule, the values will be combined. For example, if the point exceeds the UCL and is part of a six-point trend, then the Rules Check value would be 101.

Conditional Colors

As previously mentioned, developers may wish to identify out-of-control conditions on the graph by leveraging the Rules Check data. This can be done in the following steps: (This assumes the SPC function has already been applied to the data)

  1. From the Process Modules listbox in the data editor, select Add
  2. Choose the Conditional Colors process module (this is a default process module within the Visual Mining group).
     
    spc
     
  3. In the “Configure Process Module” dialog, set the Base Value Column to be the index of the Rules Check column. Note that all column numbers start at 0 (in our example above, the column index is 14).
  4. Next to the “Expressions” listbox, select the Add button. Set up one or more expressions that you’d like to identify individual colors for.
     
    spc
     
  5. After configuring the parameters, an additional column will be added to the data set called “Colors“.
  6. From the chart editor, configure the SPC chart per the instructions given in the document. In the Data Source binding tab, map the Line Color Tables data to the new column. This will cause any non-null color values to override the default color of the line symbol.
     
    chart
     

SPC Attributes Chart – c

The c chart is used to measure the number of defects for a given item. It implies that each sample has an equal size.

Parameter Set

Parameters Description
Column Index for Sample ID Column containing an identifier for the sample (date, lot number, etc)
Column Index For Non-Conformance Size Column containing the defect results for each subgroup.
Include Specifications If yes, output LSL/USL/Target
LSL Lower Specification Limit
USL Upper Specification Limit
Target Target
Sigma To Apply The Sigma value controlling the control limits
Result Type Chart Data or Metrics 

Chart Data is always required for construction and display of a control chart. Metrics is used for display in a table as textual information or can be plotted in the chart.

Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Determine statistically normal number of accidents per month, defects per square yard of cloth, oil spills per year, etc.

Data Sample

Input Parameter

Day

Errors Per 1000

1 6
2 7
3 7
4 6
5 8
6 6
7 5
8 8
9 1
10 6
11 2
12 5
13 5
14 4
15 3
16 3
17 2
18 0
19 0
20 1
21 2
22 5
23 1
24 7
25 7
26 1
27 5
28 5
29 8
30 8
Sample ID =0
Non-Conform = 1
Include Specifications=No
LSL=
USL=
Target=
Sigma To Apply=3
Result Type=Chart Data
Include Original Data = No
Result
Day Errors Per 1000 CBAR LCL UCL
1 6 4.46666666666666 0.0 10.80701366032560
2 7 4.46666666666666 0.0 10.80701366032560
3 7 4.46666666666666 0.0 10.80701366032560
4 6 4.46666666666666 0.0 10.80701366032560
5 8 4.46666666666666 0.0 10.80701366032560
6 6 4.46666666666666 0.0 10.80701366032560
7 5 4.46666666666666 0.0 10.80701366032560
8 8 4.46666666666666 0.0 10.80701366032560
9 1 4.46666666666666 0.0 10.80701366032560
10 6 4.46666666666666 0.0 10.80701366032560
11 2 4.46666666666666 0.0 10.80701366032560
12 5 4.46666666666666 0.0 10.80701366032560
13 5 4.46666666666666 0.0 10.80701366032560
14 4 4.46666666666666 0.0 10.80701366032560
15 3 4.46666666666666 0.0 10.80701366032560
16 3 4.46666666666666 0.0 10.80701366032560
17 2 4.46666666666666 0.0 10.80701366032560
18 0 4.46666666666666 0.0 10.80701366032560
19 0 4.46666666666666 0.0 10.80701366032560
20 1 4.46666666666666 0.0 10.80701366032560
21 2 4.46666666666666 0.0 10.80701366032560
22 5 4.46666666666666 0.0 10.80701366032560
23 1 4.46666666666666 0.0 10.80701366032560
24 7 4.46666666666666 0.0 10.80701366032560
25 7 4.46666666666666 0.0 10.80701366032560
26 1 4.46666666666666 0.0 10.80701366032560
27 5 4.46666666666666 0.0 10.80701366032560
28 5 4.46666666666666 0.0 10.80701366032560
29 8 4.46666666666666 0.0 10.80701366032560
30 8 4.46666666666666 0.0 10.80701366032560

 
Chart Sample
The following chart shows the number of unfavorable responses per 1000 customer surveys on a given day.
 
chart
 

SPC Attributes Chart – np

The np Attribute chart displays the number of non-conforming items within a defined sample size.

Parameter Set

Parameters Description
Column Index for Sample ID Column containing an identifier for the sample (date, lot number, etc)
Column Index for Sample Size Column containing the sample size
Column Index For Non-Conformance Size Column containing the defect results for each subgroup.
Include Specifications If yes, output LSL/USL/Target
LSL Lower Specification Limit
USL Upper Specification Limit
Target Target
Sigma To Apply The Sigma value controlling the control limits
Result Type Chart Data or Metrics 

Chart Data is always required for construction and display of a control chart. Metrics is used for display in a table as textual information or can be plotted in the chart.

Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Use to determine errors per 1000/lines of software, on-the-job accidents per 2000 man-hours, many other uses.

Data Sample

Input Parameter
Day SAMPLE_SIZE Non-Conforming
1 100 10
2 100 12
3 100 10
4 100 11
5 100 6
6 100 7
7 100 12
8 100 10
9 100 6
10 100 11
11 100 9
12 100 14
13 100 16
14 100 21
15 100 20
16 100 12
17 100 11
18 100 6
19 100 10
20 100 10
21 100 11
22 100 11
23 100 11
24 100 6
25 100 9
Sample ID =0
Sample Size=1
Non-Conform = 2
Include Specifications=No
LSL=
USL=
Target=
Sigma To Apply=3
Result Type=Chart Data
Include Original Data = No
Result
Day SAMPLE_SIZE Non-Conforming CL LCL UCL
1 100 10 10.87999999999990 1.53835646152134 20.22164353847860
2 100 12 10.87999999999990 1.53835646152134 20.22164353847860
3 100 10 10.87999999999990 1.53835646152134 20.22164353847860
4 100 11 10.87999999999990 1.53835646152134 20.22164353847860
5 100 6 10.87999999999990 1.53835646152134 20.22164353847860
6 100 7 10.87999999999990 1.53835646152134 20.22164353847860
7 100 12 10.87999999999990 1.53835646152134 20.22164353847860
8 100 10 10.87999999999990 1.53835646152134 20.22164353847860
9 100 6 10.87999999999990 1.53835646152134 20.22164353847860
10 100 11 10.87999999999990 1.53835646152134 20.22164353847860
11 100 9 10.87999999999990 1.53835646152134 20.22164353847860
12 100 14 10.87999999999990 1.53835646152134 20.22164353847860
13 100 16 10.87999999999990 1.53835646152134 20.22164353847860
14 100 21 10.87999999999990 1.53835646152134 20.22164353847860
15 100 20 10.87999999999990 1.53835646152134 20.22164353847860
16 100 12 10.87999999999990 1.53835646152134 20.22164353847860
17 100 11 10.87999999999990 1.53835646152134 20.22164353847860
18 100 6 10.87999999999990 1.53835646152134 20.22164353847860
19 100 10 10.87999999999990 1.53835646152134 20.22164353847860
20 100 10 10.87999999999990 1.53835646152134 20.22164353847860
21 100 11 10.87999999999990 1.53835646152134 20.22164353847860
22 100 11 10.87999999999990 1.53835646152134 20.22164353847860
23 100 11 10.87999999999990 1.53835646152134 20.22164353847860
24 100 6 10.87999999999990 1.53835646152134 20.22164353847860
25 100 9 10.87999999999990 1.53835646152134 20.22164353847860

 
Chart Sample
The following chart shows a non-conformance (late arrivals) plot per 1000 (sample size) packages for a given day.
 
chart
 

SPC Attributes Chart – p

The p SPC Attribute chart is used to evaluate non-conforming units by comparing the proportion of defective elements to the number sampled. It may be used for any sample size and inconsistent sample sizes.

Parameter Set

Parameters Description
Column Index for Sample ID Column containing an identifier for the sample (date, lot number, etc)
Column Index for Sample Size Column containing the sample size
Column Index For Non-Conformance Size Column containing the defect results for each subgroup.
Include Specifications If yes, output LSL/USL/Target
LSL Lower Specification Limit
USL Upper Specification Limit
Target Target
Sigma To Apply The Sigma value controlling the control limits
Result Type Chart Data or Metrics 

Chart Data is always required for construction and display of a control chart. Metrics is used for display in a table as textual information or can be plotted in the chart.

Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Test and report results on between 300 – 900 computer chips/day to determine approximate quality levels. Many more uses.

Data Sample

Input Parameter
Day SAMPLE_SIZE Rejects
1 286 14
2 281 22
3 310 9
4 313 19
5 293 21
6 305 18
7 322 16
8 316 16
9 293 21
10 287 14
11 307 15
12 328 16
13 296 21
14 296 9
15 317 25
16 297 15
17 283 14
18 321 13
19 317 10
20 307 21
21 317 19
22 323 23
23 304 15
24 304 12
25 324 19
26 289 17
27 299 15
28 318 13
29 313 19
30 289 12
Sample ID =0
Sample Size=1
Non-Conform = 2
Include Specifications=No
LSL=
USL=
Target=
Sigma To Apply=3
Result Type=Chart Data
Include Original Data = No
Result
Day SAMPLE_SIZE Rejects PBAR LCL UCL PHAT
1 286 14 0.05391399676324 0.01384999641457 0.09397799711191 0.04895104895105
2 281 22 0.05391399676324 0.01349512677149 0.09433286675499 0.07829181494662
3 310 9 0.05391399676324 0.01543209907320 0.09239589445328 0.02903225806452
4 313 19 0.05391399676324 0.01561696114000 0.09221103238649 0.06070287539936
5 293 21 0.05391399676324 0.01433146970114 0.09349652382534 0.07167235494881
6 305 18 0.05391399676324 0.01511795592052 0.09271003760596 0.05901639344262
7 322 16 0.05391399676324 0.01615596115572 0.09167203237076 0.04968944099379
8 316 16 0.05391399676324 0.01579918438933 0.09202880913715 0.05063291139241
9 293 21 0.05391399676324 0.01433146970114 0.09349652382534 0.07167235494881
10 287 14 0.05391399676324 0.01391985523032 0.09390813829617 0.04878048780488
11 307 15 0.05391399676324 0.01524453387895 0.09258345964754 0.04885993485342
12 328 16 0.05391399676324 0.01650290298965 0.09132509053683 0.04878048780488
13 296 21 0.05391399676324 0.01453256766793 0.09329542585855 0.07094594594595
14 296 9 0.05391399676324 0.01453256766793 0.09329542585855 0.03040540540541
15 317 25 0.05391399676324 0.01585934987652 0.09196864364996 0.07886435331230
16 297 15 0.05391399676324 0.01459892227125 0.09322907125523 0.05050505050505
17 283 14 0.05391399676324 0.01363820286647 0.09418979066001 0.04946996466431
18 321 13 0.05391399676324 0.01609719374956 0.09173079977692 0.04049844236760
19 317 10 0.05391399676324 0.01585934987652 0.09196864364996 0.03154574132492
20 307 21 0.05391399676324 0.01524453387895 0.09258345964754 0.06840390879479
21 317 19 0.05391399676324 0.01585934987652 0.09196864364996 0.05993690851735
22 323 23 0.05391399676324 0.01621445543656 0.09161353808993 0.07120743034056
23 304 15 0.05391399676324 0.01505419903143 0.09277379449506 0.04934210526316
24 304 12 0.05391399676324 0.01505419903143 0.09277379449506 0.03947368421053
25 324 19 0.05391399676324 0.01627267870115 0.09155531482533 0.05864197530864
26 289 17 0.05391399676324 0.01405848352103 0.09376951000546 0.05882352941176
27 299 15 0.05391399676324 0.01473063143369 0.09309736209280 0.05016722408027
28 318 13 0.05391399676324 0.01591923134066 0.09190876218582 0.04088050314465
29 313 19 0.05391399676324 0.01561696114000 0.09221103238649 0.06070287539936
30 289 12 0.05391399676324 0.01405848352103 0.09376951000546 0.04152249134948

 
Chart Sample
The following chart shows the proportion of defective LCD’s produced on a given day.
 
chart
 

SPC Attributes Chart – u

The u chart is used when there can be more than one defect per item tested and the sample size varies. It shows the proportion of defects per item.

Parameter Set

Parameters Description
Column Index for Sample ID Column containing an identifier for the sample (date, lot number, etc)
Column Index for Sample Size Column containing the sample size
Column Index For Non-Conformance Size Column containing the defect results for each subgroup.
Include Specifications If yes, output LSL/USL/Target
LSL Lower Specification Limit
USL Upper Specification Limit
Target Target
Sigma To Apply The Sigma value controlling the control limits
Result Type Chart Data or Metrics 

Chart Data is always required for construction and display of a control chart. Metrics is used for display in a table as textual information or can be plotted in the chart.

Include Original Data If “Yes” include the original dataset in the result table

 

Applications

Use to determine number of defective items on a circuit board, number of unfavorable responses on a customer survey, many more uses.

Data Sample

Input Parameter
Day SAMPLE_SIZE Non-Conformities
1 110 120
2 82 94
3 96 89
4 115 162
5 108 150
6 56 82
7 120 143
8 98 134
9 102 97
10 115 145
11 88 128
12 71 83
13 95 120
14 103 116
15 113 127
16 85 92
17 101 140
18 42 60
19 97 121
20 92 108
21 100 131
22 115 119
23 99 93
24 57 88
25 89 107
26 101 105
27 122 143
28 105 132
29 98 100
30 48 60
Sample ID =0
Sample Size=1
Non-Conform = 2
Include Specifications=No
LSL=
USL=
Target=
Sigma To Apply=3
Result Type=Chart Data
Include Original Data = No 
Result
Day SAMPLE_SIZE Non-Conformities UBAR LCL UCL Non-Conf/Unit
1 110 120 1.20049592631951 0.88709140501902 1.51390044762002 1.09090909090909
2 82 94 1.20049592631951 0.83750591542297 1.56348593721607 1.14634146341463
3 96 89 1.20049592631951 0.86501642904367 1.53597542359536 0.92708333333333
4 115 162 1.20049592631951 0.89398025770979 1.50701159492924 1.40869565217391
5 108 150 1.20049592631951 0.88420282302244 1.51678902961659 1.38888888888888
6 56 82 1.20049592631951 0.76125015764172 1.63974169499731 1.46428571428571
7 120 143 1.20049592631951 0.90043394193302 1.50055791070601 1.19166666666666
8 98 134 1.20049592631951 0.86845733535984 1.53253451727919 1.36734693877551
9 102 97 1.20049592631951 0.87503300808483 1.52595884455420 0.95098039215686
10 115 145 1.20049592631951 0.89398025770979 1.50701159492924 1.26086956521739
11 88 128 1.20049592631951 0.85009901927767 1.55089283336137 1.45454545454545
12 71 83 1.20049592631951 0.81039909224368 1.59059276039536 1.16901408450704
13 95 120 1.20049592631951 0.86325536971379 1.53773648292525 1.26315789473684
14 103 116 1.20049592631951 0.87661677864285 1.52437507399618 1.12621359223300
15 113 127 1.20049592631951 0.89127962695068 1.50971222568835 1.12389380530973
16 85 92 1.20049592631951 0.84396916242232 1.55702269021671 1.08235294117647
17 101 140 1.20049592631951 0.87342577402261 1.52756607861642 1.38613861386138
18 42 60 1.20049592631951 0.69329860074645 1.70769325189258 1.42857142857142
19 97 121 1.20049592631951 0.86675018482191 1.53424166781712 1.24742268041237
20 92 108 1.20049592631951 0.85780099072945 1.54319086190959

1.17391304347826
21 100 131 1.20049592631951 0.87179449132302 1.52919736131601 1.31
22 115 119 1.20049592631951 0.89398025770979 1.50701159492924 1.03478260869565
23 99 93 1.20049592631951 0.87013855421807 1.53085329842096 0.93939393939394
24 57 88 1.20049592631951 0.76512023985295 1.63587161278609 1.54385964912280
25 89 107 1.20049592631951 0.85207310206818 1.54891875057085 1.20224719101123
26 101 105 1.20049592631951 0.87342577402261 1.52756607861642 1.03960396039603
27 122 143 1.20049592631951 0.90290362989298 1.49808822274606 1.17213114754098
28 105 132 1.20049592631951 0.87971617192815 1.52127568071088 1.25714285714285
29 98 100 1.20049592631951 0.86845733535984 1.53253451727919 1.02040816326530
30 48 60 1.20049592631951 0.72605627137391 1.67493558126512 1.25

 
Chart Sample
The following chart shows the results of daily customer surveys. Each point represents the proportion of negative responses for each survey, for a given day.
 
chart
 

SPC Variables Chart – EWMA

The Exponentially Weighted Moving Average (EWMA) chart is used for fast detection of out of control processes and no run rules are required. It gives less emphasis, or weight, to the data as the data ages.

Parameter Set

Parameters Description
Column Index for Sample ID Column containing an identifier for the sample (date, lot number, etc)
Column Index For Item Value Column containing the sample size
Include Specifications If yes, output LSL/USL/Target
LSL Lower Specification Limit
USL Upper Specification Limit
Target Target Level
Result Type Chart Data or Metrics 

Chart Data is always required for construction and display of a control chart. Metrics is used for display in a table as textual information or can be plotted in the chart.

Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Used in many manufacturing quality applications measuring the precision of the manufactured products.

Data Sample

Input Parameter
n meas#1
1 2.00000
1 1.99980
1 2.00020
2 1.99980
2 2.00030
2 2.00020
3 1.99980
3 2.00010
3 2.00050
4 1.99970
4 2.00000
4 2.00040
5 2.00030
5 2.00030
5 2.00020
6 2.00040
6 2.00030
6 2.00000
7 1.99980
7 1.99980
7 1.99980
8 2.00000
8 2.00010
8 2.00010
9 2.00050
9 2.00000
9 1.99990
10 1.99950
10 1.99980
10 2.00010
11 2.00020
11 1.99990
11 2.00010
12 2.00020
12 1.99980
12 2.00050
13 2.00000
13 2.00010
13 1.99980
14 2.00000
14 2.00020
14 2.00040
15 1.99940
15 2.00010
15 1.99960
16 1.99990
16 2.00030
16 1.99930
17 2.00020
17 1.99980
Sample ID =0
Sample Value = 1
Include Specifications=No
LSL =
USL =
Target=
Piecewise = No
Column Index for Piecewise =
Piecewise Range =
Result Type=Chart Data
Include Original Data = No 
Result
n XDBBAR LCL UCL XHAT
1 2.0000294 1.9999343 2.0001245 2.0000235
2 2.0000294 1.9999076 2.0001512 2.0000388
3 2.0000294 1.9998933 2.0001655 2.0000577
4 2.0000294 1.9998848 2.000174 2.0000528
5 2.0000294 1.9998797 2.0001791 2.0000956
6 2.0000294 1.9998765 2.0001823 2.0001232
7 2.0000294 1.9998745 2.0001844 2.0000585
8 2.0000294 1.9998732 2.0001856 2.0000602
9 2.0000294 1.9998724 2.0001865 2.0000748
10 2.0000294 1.9998719 2.000187 2.0000198
11 2.0000294 1.9998715 2.0001873 2.0000292
12 2.0000294 1.9998713 2.0001875 2.0000567
13 2.0000294 1.9998712 2.0001876 2.0000387
14 2.0000294 1.9998711 2.0001877 2.0000709
15 2.0000294 1.999871 2.0001878 1.9999968
16 2.0000294 1.999871 2.0001878 1.9999641
17 2.0000294 1.999871 2.0001878 1.9999713

 
Chart Sample
 
chart
 

SPC Variables Chart – Histogram

Shows the frequency of elements in the data sample. Also allows specification of USL/LSL.

Parameter Set

Parameters Description
Column Index for Sample ID Column containing an identifier for the sample (date, lot number, etc)
Column Index For Item Value Column containing the sample size
Include Specifications If yes, output LSL/USL/Target
LSL Lower Specification Limit
USL Upper Specification Limit
Target Target Level
Result Type Chart Data or Metrics 

Chart Data is always required for construction and display of a control chart. Metrics is used for display in a table as textual information or can be plotted in the chart.

Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Use to show software errors found per test segment, many other uses.

Data Sample

Input Parameter
batch errors
1 7
2 9
3 8
4 8
5 9
6 4
7 7
8 10
9 14
10 9
11 8
12 6
13 12
14 2
15 11
16 8
17 7
18 8
19 9
20 10
21 6
22 9
Sample ID =0
Sample Value = 1
Include Specifications=Yes
LSL = 4
USL = 12
Target=7
Piecewise = No
Column Index for Piecewise =
Piecewise Range =
Result Type=Chart Data
Include Original Data = No
Result
null BIN_X_START BIN_X_END BIN_X_MID X_FREQ UCL LCL LSL
1 1.59999999999999 2.39999999999950 1.99999999999999 1.0 7.45523832700180 -7.45523832700180 4.00
2 2.39999999999999 3.19999999999970 2.8 0.0 7.45523832700180 -7.45523832700180 4.00
3 3.19999999999999 4.0 3.59999999999999 1.0 7.45523832700180 -7.45523832700180 4.00
4 4.0 4.8 4.4 0.0 7.45523832700180 -7.45523832700180 4.00
5 4.8 5.6 5.19999999999999 0.0 7.45523832700180 -7.45523832700180 4.00
6 5.6 6.4 6.0 2.0 7.45523832700180 -7.45523832700180 4.00
7 6.4 7.2 6.80000000000000 3.0 7.45523832700180 -7.45523832700180 4.00
8 7.2 8.0 7.6 5.0 7.45523832700180 -7.45523832700180 4.00
9 8.0 8.8 8.4 0.0 7.45523832700180 -7.45523832700180 4.00
10 8.8 9.6 9.2 5.0 7.45523832700180 -7.45523832700180 4.00
11 9.6 10.4 10.0 2.0 7.45523832700180 -7.45523832700180 4.00
12 10.4 11.20000000000100 10.8 1.0 7.45523832700180 -7.45523832700180 4.00
13 11.20000000000010 12.0 11.60000000000000 1.0 7.45523832700180 -7.45523832700180 4.00
14 12.0 12.8 12.4 0.0 7.45523832700180 -7.45523832700180 4.00
15 12.8 13.6 13.2 0.0 7.45523832700180 -7.45523832700180 4.00
16 13.6 14.4 14.0 1.0 7.45523832700180 -7.45523832700180 4.00

 
Chart Sample
 
chart
 

SPC Variables Chart – MR

Moving Range chart. Helps amplify sudden changes in data.

Parameter Set

Parameters Description
Column Index for Sample ID Column containing an identifier for the sample (date, lot number, etc)
Column Index For Item Value Column containing the sample size
Include Specifications If yes, output LSL/USL/Target
LSL Lower Specification Limit
USL Upper Specification Limit
Target Target Level
Piecewise If yes, recalculate at specified ranges
Column Index For Piecewise Column used to identify ranges
Piecewise Range Ranges used for independent calculation
Result Type Chart Data or Metrics 

Chart Data is always required for construction and display of a control chart. Metrics is used for display in a table as textual information or can be plotted in the chart.

Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Note increase in product defects, days late, many more uses.

Data Sample

Input Parameter
Sample Meas
1 2
2 1.9998
3 2.0002
4 1.9998
5 2.0003
6 2.0002
7 1.9998
8 2.0001
9 2.0005
10 1.9997
11 2
12 2.0004
Sample ID =0
Sample Value = 1
Include Specifications=Yes
LSL = .0002
USL = .0008
Target=.0005
Piecewise=No
Column Index For Piecewise=
Piecewise Range=
Result Type=Chart Data
Include Original Data = No
Result
# MEASUREMENT XBAR MRBAR MOVING_RANGE UCL LCL LSL Target USL
1 2 2.0000666666667 3.8181818181822E-04 1.9999999999998E-04 2.0010823030303 1.9990510303030 2.0E-04 5.0E-04 8.0E-04
2 1.9998 2.0000666666667 3.8181818181822E-04 3.9999999999996E-04 2.0010823030303 1.9990510303030 2.0E-04 5.0E-04 8.0E-04
3 2.0002 2.0000666666667 3.8181818181822E-04 3.9999999999996E-04 2.0010823030303 1.9990510303030 2.0E-04 5.0E-04 8.0E-04
4 1.9998 2.0000666666667 3.8181818181822E-04 5.0000000000017E-04 2.0010823030303 1.9990510303030 2.0E-04 5.0E-04 8.0E-04
5 2.0003 2.0000666666667 3.8181818181822E-04 1.0000000000021E-04 2.0010823030303 1.9990510303030 2.0E-04 5.0E-04 8.0E-04
6 2.0002 2.0000666666667 3.8181818181822E-04 3.9999999999996E-04 2.0010823030303 1.9990510303030 2.0E-04 5.0E-04 8.0E-04
7 1.9998 2.0000666666667 3.8181818181822E-04 3.0000000000019E-04 2.0010823030303 1.9990510303030 2.0E-04 5.0E-04 8.0E-04
8 2.0001 2.0000666666667 3.8181818181822E-04 3.9999999999996E-04 2.0010823030303 1.9990510303030 2.0E-04 5.0E-04 8.0E-04
9 2.0005 2.0000666666667 3.8181818181822E-04 8.0000000000013E-04 2.0010823030303 1.9990510303030 2.0E-04 5.0E-04 8.0E-04
10 1.9997 2.0000666666667 3.8181818181822E-04 2.9999999999997E-04 2.0010823030303 1.9990510303030 2.0E-04 5.0E-04 8.0E-04
11 2 2.0000666666667 3.8181818181822E-04 3.9999999999996E-04 2.0010823030303 1.9990510303030 2.0E-04 5.0E-04 8.0E-04
12 2.0004 2.0000666666667 3.8181818181822E-04 null 2.0010823030303 1.9990510303030 2.0E-04 5.0E-04 8.0E-04

 
Chart Sample
 
chart
 

SPC Variables Chart – Median-R

The Median-R, or “median range” chart determines the median value and range of each subgroup. It controls the centering of a process as well as the process variability. Typically used when the samples in the subgroup are 10 or less.

Parameter Set

Parameters Description
Column Index for Sample ID Column containing an identifier for the sample (date, lot number, etc)
Column Index For Item Value Column containing the sample size
Include Specifications If yes, output LSL/USL/Target
LSL Lower Specification Limit
USL Upper Specification Limit
Target Target Level
Piecewise If yes, recalculate at specified ranges
Column Index For Piecewise Column used to identify ranges
Piecewise Range Ranges used for independent calculation
Result Type Chart Data or Metrics 

Chart Data is always required for construction and display of a control chart. Metrics is used for display in a table as textual information or can be plotted in the chart.

Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Use for controlling energy use, product output, much more.

Data Sample

Input Parameter
n meas#1
1 2
1 1.9998
1 2.0002
2 1.9998
2 2.0003
2 2.0002
3 1.9998
3 2.0001
3 2.0005
4 1.9997
4 2
4 2.0004
5 2.0003
5 2.0003
5 2.0002
6 2.0004
6 2.0003
6 2
7 1.9998
7 1.9998
7 1.9998
8 2
8 2.0001
8 2.0001
9 2.0005
9 2
9 1.9999
10 1.9995
10 1.9998
10 2.0001
11 2.0002
11 1.9999
11 2.0001
12 2.0002
12 1.9998
12 2.0005
13 2
13 2.0001
13 1.9998
14 2
14 2.0002
14 2.0004
15 1.9994
15 2.0001
15 1.9996
16 1.9999
16 2.0003
16 1.9993
17 2.0002
17 1.9998
Sample ID =0
Sample Value = 1
Include Specifications=No
LSL =
USL =
Target=
Piecewise=No
Column Index For Piecewise=
Piecewise Range=
Result Type=Chart Data
Include Original Data = No
Result
n XBAR XBAR-UCL XBAR_LCL MEDIAN RANGE R-UCL R-LCL
1 2.0 2.0005986647059 1.9994954529412 2.0 3.9999999999996E-04 0.0011962676766 0.0
2 2.0001000000000 2.0005986647059 1.9994954529412 2.0002 5.0000000000017E-04 0.0011962676766 0.0
3 2.0001333333333 2.0005986647059 1.9994954529412 2.0001 7.0000000000015E-04 0.0011962676766 0.0
4 2.0000333333333 2.0005986647059 1.9994954529412 2.0 6.9999999999992E-04 0.0011962676766 0.0
5 2.0002666666667 2.0005986647059 1.9994954529412 2.0003 1.0000000000021E-04 0.0011962676766 0.0
6 2.0002333333333 2.0005986647059 1.9994954529412 2.0003 3.9999999999996E-04 0.0011962676766 0.0
7 1.9998000000000 2.0005986647059 1.9994954529412 1.9998 0.0 0.0011962676766 0.0
8 2.0000666666667 2.0005986647059 1.9994954529412 2.0001 1.0000000000021E-04 0.0011962676766 0.0
9 2.0001333333333 2.0005986647059 1.9994954529412 2.0 6.0000000000016E-04 0.0011962676766 0.0
10 1.9998000000000 2.0005986647059 1.9994954529412 1.9998 6.0000000000016E-04 0.0011962676766 0.0
11 2.0000666666667 2.0005986647059 1.9994954529412 2.0001 2.9999999999997E-04 0.0011962676766 0.0
12 2.0001666666667 2.0005986647059 1.9994954529412 2.0002 7.0000000000015E-04 0.0011962676766 0.0
13 1.9999666666667 2.0005986647059 1.9994954529412 2.0 3.0000000000019E-04 0.0011962676766 0.0
14 2.0002 2.0005986647059 1.9994954529412 2.0002 3.9999999999996E-04 0.0011962676766 0.0
15 1.9997 2.0005986647059 1.9994954529412 1.9996 7.0000000000015E-04 0.0011962676766 0.0
16 1.9998333333333 2.0005986647059 1.9994954529412 1.9999 1.0000000000001E-03 0.0011962676766 0.0
17 2.0

2.0005986647059

1.9994954529412

2.0002

3.9999999999996E-04

0.0011962676766

0.0

 
Chart Sample
 
chart
 

SPC Variables Chart – Median-s

The Median-s, or “median standard deviation” chart determines the median value and standard deviation of each subgroup. Typically used when the samples in the subgroup are 10 or more.

Parameter Set

Parameters Description
Column Index for Sample ID Column containing an identifier for the sample (date, lot number, etc)
Column Index For Item Value Column containing the sample size
Include Specifications If yes, output LSL/USL/Target
LSL Lower Specification Limit
USL Upper Specification Limit
Target Target Level
Piecewise If yes, recalculate at specified ranges
Column Index For Piecewise Column used to identify ranges
Piecewise Range Ranges used for independent calculation
Result Type Chart Data or Metrics 

Chart Data is always required for construction and display of a control chart. Metrics is used for display in a table as textual information or can be plotted in the chart.

Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Use for controlling energy use, product output, much more.

Data Sample

Input Parameter
n meas#1
1 2
1 1.9998
1 2.0002
2 1.9998
2 2.0003
2 2.0002
3 1.9998
3 2.0001
3 2.0005
4 1.9997
4 2
4 2.0004
5 2.0003
5 2.0003
5 2.0002
6 2.0004
6 2.0003
6 2
7 1.9998
7 1.9998
7 1.9998
8 2
8 2.0001
8 2.0001
9 2.0005
9 2
9 1.9999
10 1.9995
10 1.9998
10 2.0001
11 2.0002
11 1.9999
11 2.0001
12 2.0002
12 1.9998
12 2.0005
13 2
13 2.0001
13 1.9998
14 2
14 2.0002
14 2.0004
15 1.9994
15 2.0001
15 1.9996
16 1.9999
16 2.0003
16 1.9993
17 2.0002
17 1.9998
Sample ID =0
Sample Value = 1
Include Specifications=No
LSL =
USL =
Target=
Piecewise=No
Column Index For Piecewise=
Piecewise Range=
Result Type=Chart Data
Include Original Data = No
Result
n XBAR XBAR-UCL XBAR_LCL MEDIAN SD SD-UCL SD-LCL
1 2.0 2.0002560224109 1.9998380952362 2.0 1.6329931618553E-04 5.0295576817698E-04 0.0
2 2.0001000000000 2.0002560224109 1.9998380952362 2.0002 2.1602468994697E-04 5.0295576817698E-04 0.0
3 2.0001333333333 2.0002560224109 1.9998380952362 2.0001 2.8674417556814E-04 5.0295576817698E-04 0.0
4 2.0000333333333 2.0002560224109 1.9998380952362 2.0 2.8674417556806E-04 5.0295576817698E-04 0.0
5 2.0002666666667 2.0002560224109 1.9998380952362 2.0003 4.7140452079203E-05 5.0295576817698E-04 0.0
6 2.0002333333333 2.0002560224109 1.9998380952362 2.0003 1.6996731711977E-04 5.0295576817698E-04 0.0
7 1.9998000000000 2.0002560224109 1.9998380952362 1.9998 2.2204460492503E-16 5.0295576817698E-04 0.0
8 2.0000666666667 2.0002560224109 1.9998380952362 2.0001 4.7140452079203E-05 5.0295576817698E-04 0.0
9 2.0001333333333 2.0002560224109 1.9998380952362 2.0 2.6246692913380E-04 5.0295576817698E-04 0.0
10 1.9998000000000 2.0002560224109 1.9998380952362 1.9998 2.4494897427838E-04 5.0295576817698E-04 0.0
11 2.0000666666667 2.0002560224109 1.9998380952362 2.0001 1.2472191289247E-04 5.0295576817698E-04 0.0
12 2.0001666666667 2.0002560224109 1.9998380952362 2.0002 2.8674417556814E-04 5.0295576817698E-04 0.0
13 1.9999666666667 2.0002560224109 1.9998380952362 2.0 1.2472191289253E-04 5.0295576817698E-04 0.0
14 2.0002 2.0002560224109 1.9998380952362 2.0002 1.6329931618553E-04 5.0295576817698E-04 0.0
15 1.9997 2.0002560224109 1.9998380952362 1.9996 2.9439202887766E-04 5.0295576817698E-04 0.0
16 1.9998333333333 2.0002560224109 1.9998380952362 1.9999 4.1096093353130E-04 5.0295576817698E-04 0.0
17 2.0 2.0002560224109 1.9998380952362 2.0002 1.9999999999998E-04 5.0295576817698E-04 0.0

 
Chart Sample
 
chart
 

SPC Variables Chart – Probability

Determines the “normality” of a given distribution and the likelihood of a particular process result.

Parameter Set

Parameters Description
Column Index for Sample ID Column containing an identifier for the sample (date, lot number, etc)
Column Index For Item Value Column containing the sample size
Include Specifications If yes, output LSL/USL/Target
LSL Lower Specification Limit
USL Upper Specification Limit
Target Target Level
Piecewise If yes, recalculate at specified ranges
Column Index For Piecewise Column used to identify ranges
Piecewise Range Ranges used for independent calculation
Result Type Chart Data or Metrics 

Chart Data is always required for construction and display of a control chart. Metrics is used for display in a table as textual information or can be plotted in the chart.

Include Original Data If “Yes” include the original dataset in the result table

 
Applications

Help determine expected results for task completion, many other uses.

 

Data Sample

Input Parameter
n meas#1
1 2
1 1.9998
1 2.0002
2 1.9998
2 2.0003
2 2.0002
3 1.9998
3 2.0001
3 2.0005
4 1.9997
4 2
4 2.0004
5 2.0003
5 2.0003
5 2.0002
6 2.0004
6 2.0003
6 2
7 1.9998
7 1.9998
7 1.9998
8 2
8 2.0001
8 2.0001
9 2.0005
9 2
9 1.9999
10 1.9995
10 1.9998
10 2.0001
11 2.0002
11 1.9999
11 2.0001
12 2.0002
12 1.9998
12 2.0005
13 2
13 2.0001
13 1.9998
14 2
14 2.0002
14 2.0004
15 1.9994
15 2.0001
15 1.9996
16 1.9999
16 2.0003
16 1.9993
17 2.0002
17 1.9998
Sample ID =0
Sample Value = 1
Include Specifications=No
LSL =
USL =
Target=
Piecewise=No
Column Index For Piecewise=
Piecewise Range=
Result Type=Chart Data
Include Original Data = No
Result
n XBAR PROBABILITY
1 2 0.4294153
2 2.0001 0.6652634
3 2.0001333 0.7351451
4 2.0000333 0.5094601
5 2.0002667 0.9243224
6 2.0002333 0.8912462
7 1.9998 0.0826705
8 2.0000667 0.5891243
9 2.0001333 0.7351451
10 1.9998 0.0826705
11 2.0000667 0.5891243
12 2.0001667 0.7967382
13 1.9999667 0.3521802
14 2.0002 0.8488714
15 1.9997 0.023182
16 1.9998333 0.11786
17 2 0.4294153

 

Chart Sample
 
chart
 

SPC Variables Chart – XBar-R

Displays variation occurring in a set of data points. It helps to examine the variation of a process (but not necessarily a product). It computes the average value and range for each subgroup. Typically used when the samples in the subgroup are 10 or less.

Parameter Set

Parameters Description
Column Index for Sample ID Column containing an identifier for the sample (date, lot number, etc)
Column Index For Item Value Column containing the sample size
Include Specifications If yes, output LSL/USL/Target
LSL Lower Specification Limit
USL Upper Specification Limit
Target Target Level
Piecewise If yes, recalculate at specified ranges
Column Index For Piecewise Column used to identify ranges
Piecewise Range Ranges used for independent calculation
Result Type Chart Data or Metrics 

Chart Data is always required for construction and display of a control chart. Metrics is used for display in a table as textual information or can be plotted in the chart.

Include Original Data If “Yes” include the original dataset in the result table

 

Applications

May be used to examine the stability in a manufacturing process, software development process, and much more.

Data Sample

Input Parameter
n meas#1
1 2
1 1.9998
1 2.0002
2 1.9998
2 2.0003
2 2.0002
3 1.9998
3 2.0001
3 2.0005
4 1.9997
4 2
4 2.0004
5 2.0003
5 2.0003
5 2.0002
6 2.0004
6 2.0003
6 2
7 1.9998
7 1.9998
7 1.9998
8 2
8 2.0001
8 2.0001
9 2.0005
9 2
9 1.9999
10 1.9995
10 1.9998
10 2.0001
11 2.0002
11 1.9999
11 2.0001
12 2.0002
12 1.9998
12 2.0005
13 2
13 2.0001
13 1.9998
14 2
14 2.0002
14 2.0004
15 1.9994
15 2.0001
15 1.9996
16 1.9999
16 2.0003
16 1.9993
17 2.0002
17 1.9998
Sample ID =0
Sample Value = 1
Include Specifications=Yes
LSL = 1.99975
USL = 2.00025
Target= 2.0
Piecewise=Yes
Column Index For Piecewise=0
Piecewise Range=0-10,11-50
Result Type=Chart Data
Include Original Data = No
Result
XBAR-UCL XBAR_LCL RANGE R-UCL R-LCL LSL Target USL XBAR-UCL USL
2.0004761 1.9996372 4.00E-04 0.0010554 0 1.99975 2 2.00025 2.0004761 2.00025
2.0004761 1.9996372 5.00E-04 0.0010554 0 1.99975 2 2.00025 2.0004761 2.00025
2.0004761 1.9996372 7.00E-04 0.0010554 0 1.99975 2 2.00025 2.0004761 2.00025
2.0004761 1.9996372 7.00E-04 0.0010554 0 1.99975 2 2.00025 2.0004761 2.00025
2.0004761 1.9996372 1.00E-04 0.0010554 0 1.99975 2 2.00025 2.0004761 2.00025
2.0004761 1.9996372 4.00E-04 0.0010554 0 1.99975 2 2.00025 2.0004761 2.00025
2.0004761 1.9996372 0 0.0010554 0 1.99975 2 2.00025 2.0004761 2.00025
2.0004761 1.9996372 1.00E-04 0.0010554 0 1.99975 2 2.00025 2.0004761 2.00025
2.0004761 1.9996372 6.00E-04 0.0010554 0 1.99975 2 2.00025 2.0004761 2.00025
2.0004761 1.9996372 6.00E-04 0.0010554 0 1.99975 2 2.00025 2.0004761 2.00025
2.0005459 1.9994351 3.00E-04 0.0013974 0 1.99975 2 2.00025 2.0005459 2.00025
2.0005459 1.9994351 7.00E-04 0.0013974 0 1.99975 2 2.00025 2.0005459 2.00025
2.0005459 1.9994351 3.00E-04 0.0013974 0 1.99975 2 2.00025 2.0005459 2.00025
2.0005459 1.9994351 4.00E-04 0.0013974 0 1.99975 2 2.00025 2.0005459 2.00025
2.0005459 1.9994351 7.00E-04 0.0013974 0 1.99975 2 2.00025 2.0005459 2.00025
2.0005459 1.9994351 0.001 0.0013974 0 1.99975 2 2.00025 2.0005459 2.00025
2.0005459 1.9994351 4.00E-04 0.0013974 0 1.99975 2 2.00025 2.0005459 2.00025

 

Chart Sample
 
chart
 

SPC Variables Chart – XBar-s

The XBAR-s chart determines the average value and standard deviation of each subgroup. Typically used when the samples in the subgroup are 10 or more.

Parameter Set

Parameters Description
Column Index for Sample ID Column containing an identifier for the sample (date, lot number, etc)
Column Index For Item Value Column containing the sample size
Include Specifications If yes, output LSL/USL/Target
LSL Lower Specification Limit
USL Upper Specification Limit
Target Target Level
Piecewise If yes, recalculate at specified ranges
Column Index For Piecewise Column used to identify ranges
Piecewise Range Ranges used for independent calculation
Result Type Chart Data or Metrics 

Chart Data is always required for construction and display of a control chart. Metrics is used for display in a table as textual information or can be plotted in the chart.

Include Original Data If “Yes” include the original dataset in the result table

 

Applications

May be used to examine the stability in a manufacturing process, software development process, and much more.

Data Sample

Input Parameter
n meas#1
1 2
1 1.9998
1 2.0002
2 1.9998
2 2.0003
2 2.0002
3 1.9998
3 2.0001
3 2.0005
4 1.9997
4 2
4 2.0004
5 2.0003
5 2.0003
5 2.0002
6 2.0004
6 2.0003
6 2
7 1.9998
7 1.9998
7 1.9998
8 2
8 2.0001
8 2.0001
9 2.0005
9 2
9 1.9999
10 1.9995
10 1.9998
10 2.0001
11 2.0002
11 1.9999
11 2.0001
12 2.0002
12 1.9998
12 2.0005
13 2
13 2.0001
13 1.9998
14 2
14 2.0002
14 2.0004
15 1.9994
15 2.0001
15 1.9996
16 1.9999
16 2.0003
16 1.9993
17 2.0002
17 1.9998
Sample ID =0
Sample Value = 1
Include Specifications=No
LSL =
USL =
Target=
Piecewise=No
Column Index For Piecewise=
Piecewise Range=
Result Type=Chart Data
Include Original Data = No
Result
n XBAR XBAR-UCL XBAR_LCL SD SD-UCL SD-LCL Rules Check
1 2 2.0004122 1.9996467 1.63E-04 5.03E-04 0 0
2 2.0001 2.0004122 1.9996467 2.16E-04 5.03E-04 0 0
3 2.0001333 2.0004122 1.9996467 2.87E-04 5.03E-04 0 0
4 2.0000333 2.0004122 1.9996467 2.87E-04 5.03E-04 0 0
5 2.0002667 2.0004122 1.9996467 4.71E-05 5.03E-04 0 0
6 2.0002333 2.0004122 1.9996467 1.70E-04 5.03E-04 0 0
7 1.9998 2.0004122 1.9996467 2.22E-16 5.03E-04 0 0
8 2.0000667 2.0004122 1.9996467 4.71E-05 5.03E-04 0 0
9 2.0001333 2.0004122 1.9996467 2.62E-04 5.03E-04 0 0
10 1.9998 2.0004122 1.9996467 2.45E-04 5.03E-04 0 0
11 2.0000667 2.0004122 1.9996467 1.25E-04 5.03E-04 0 0
12 2.0001667 2.0004122 1.9996467 2.87E-04 5.03E-04 0 0
13 1.9999667 2.0004122 1.9996467 1.25E-04 5.03E-04 0 0
14 2.0002 2.0004122 1.9996467 1.63E-04 5.03E-04 0 0
15 1.9997 2.0004122 1.9996467 2.94E-04 5.03E-04 0 0
16 1.9998333 2.0004122 1.9996467 4.11E-04 5.03E-04 0 0
17 2 2.0004122 1.9996467 2.00E-04 5.03E-04 0 0

 

Chart Sample
 
chart